














DISCUSSION

Our data show that the nylon-3 polymers MM-TM, DM-TM, and NM are effective
against a surprisingly broad spectrum of fungi (Fig. 2), with only low to moderate
toxicity toward mammalian cells (see Text S1 and Tables S5 and S6 in supplemental

FIG 2 Maximum likelihood phylogeny of fungal species used in this study. Species were color coded based on their general sensitivity to MM-TM, DM-TM,
and NM nylon-3 polymers. All three polymers showed roughly equivalent activity against highly diverse fungi across the fungal kingdom. Any strain for
which polymer activity was not equivalent across all three polymers is indicated by the pound symbol. Any species assessed in this study in which a different
strain was used to compose the phylogeny tree is indicated by an asterisk. The strain tested in a previous publication (11) is indicated by a caret. N/A, not
available.
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material). Here we were able to assess sensitivity of 18 pathogenic genera toward the
nylon-3 chemotype, based on measurements with 41 species and 72 isolates. Visual-
ization of our results in the context of fungal phylogeny indicates general sensitivity to
the polymers, with notable exceptions in the Aspergillus clade and the basidiomycete
Filobasidiella depauperata (Fig. 2). Overall, these data provide support for the idea that
nylon-3 polymers could be useful as broad-action therapeutic agents.

Activity of the nylon-3 polymers was observed against several species of fungi with
limited or ineffective treatment options. For instance, the nylon-3 polymers were active
against Rhizopus arrhizus, one of the causative agents of mucormycosis, which is a
life-threatening disease in both immunocompetent and immunocompromised patients
(40). Depending on the predisease status of the patient and route of infection,
mucormycosis may present in pulmonary, rhino-orbital-cerebral, cutaneous, gastroin-
testinal, or disseminated forms. Treatment of mucormycosis often requires administra-
tion of amphotericin B after surgical debridement of necrotic tissues (40). Even with
rigorous treatment regimes, mortality rates are high (�40%), and amphotericin B
toxicity is problematic for patients. The sensitivity of R. arrhizus to nylon-3 polymers
suggests a new strategy to combat a challenging and deadly fungal disease for which
current treatment options are highly limited (40).

All three nylon-3 polymers also showed efficacy against dermatophytes as prees-
tablished hyphae. It is estimated that 20 to 25% of the world’s population has skin
mycoses (41), and while these infections are often superficial and cosmetic in nature,
they can have severe impact on quality of life. Topical treatment of dermatophyte
infections relies mostly on two classes of antifungal drugs, the azoles (e.g., fluconazole
and ketoconazole) and the allylamines (e.g., terbinafine and naftifine). However, there
have been increasing incidences of resistant and refractory dermatophyte infections in
the clinic, and daily dosages of terbinafine can reach 1,000 mg (42, 43). Nylon-3
polymers, with their ease of synthesis and low anticipated cost of production, could
provide a viable option for treating such topical fungal infections.

Comparisons between sensitive and resistant genera may ultimately enable us to
identify the origin(s) of sensitivity and to elucidate mechanisms of nylon-3 action. A
particular opportunity to understand how nylon-3 polymers confer antifungal activity
emerges from the observation that these materials were ineffective against Filobasi-
diella depauperata, despite the polymers’ strong activity against closely related Cryp-
tococcus species. Since the polymers were active against other filamentous fungi, it is
likely that properties not associated with filamentous morphology are responsible for
this polymer resistance phenotype. Genetic comparisons of C. neoformans and F. de-
pauperata may reveal insights into the mechanisms by which nylon-3 polymers exert
their antifungal effects.

While all three nylon-3 polymers studied, NM, MM-TM, and DM-TM, had similar
antifungal activities, subtle differences in activity profiles were noted throughout our
phylogenetically broad analysis. NM was the most active polymer against the ascomy-
cete yeasts Candida and Saccharomyces, while DM-TM was the most potent polymer
against filamentous fungi. Overall hydrophobicity represents one of the main chemical
properties that varied among the polymers (NM � MM-TM � DM-TM). All subunits in
NM bear a short cationic side chain. Therefore, this homopolymer therefore cannot
display a large and well-defined hydrophobic surface, which is believed to be an
important feature of host defense peptides (HDPs) and their synthetic mimics. The
MM-TM and DM-TM copolymers, on the other hand, should manifest greater overall
hydrophobicity relative to NM because there are one or two additional nonpolar CH2

units in the MM and DM cationic subunits relative to NM, and each of the copolymers
contains 20 to 30% of the entirely hydrophobic TM subunit. The copolymer expected
to be most hydrophobic, DM-TM, was the most active among the three against
filamentous fungi; however, this enhanced activity comes at the cost of increased
mammalian cell toxicity relative to MM-TM or NM (Text S1 and Tables S5 and S6). The
subtle differences in antifungal activity across the three polymers suggest that in-
creased overall hydrophobicity may be required to enhance activity against filamentous
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fungi, particularly of the Aspergillus clade. Polymers with increased hydrophobicity
relative to those discussed here, however, may require additional design features to
avoid enhanced toxicity toward eukaryotic cells. Here we present the activities of
materials with a novel chemotype, nylon-3 polymers, against a varied array of fungi
from across the fungal kingdom. The surprisingly broad spectrum of nylon-3 antifungal
activities, including inhibition of difficult-to-treat human pathogens, offers promise for
the development of polymeric compounds with therapeutically useful properties. The
ease of synthesis and structural diversification of nylon-3 polymers provide a broad
scope for future efforts to optimize activity against pathogenic fungi while limiting
toxicity toward the host.

MATERIALS AND METHODS
Polymer synthesis and characterization. All polymers and monomers were prepared using previ-

ously reported methods (20–23). Please see the supplemental material for more information about
polymer synthesis and characterization methods (Text S2 and Table S7).

CLSI M27-A3 protocol. The MIC100 endpoint of each antifungal agent was determined as the lowest
concentration to inhibit 100% of fungal growth compared to the no-drug control. MIC100 values for all
yeasts assayed (Table 7) were determined by the broth microdilution method according to the CLSI
M27-A3 guidelines, with slight modifications (25). Briefly, fungal cells at a density of 0.5 � 103 to 2.5 �
103 cells/ml were incubated at 30 to 35°C in RPMI 1640 plus 0.145 M 3-(N-morpholino)propanesulfonic
acid (MOPS) (pH 7.0) in 96-well plates with twofold serial dilutions of nylon-3 polymer or fluconazole
(FLC) from 1 to 64 �g/ml. After 24 to 72 h, the optical density at 600 nm (OD600) of each well was
measured using a microplate reader. Wells containing fungal cells with no drug and wells containing only
RPMI 1640 were used as positive and blank controls, respectively. Percent cell growth was determined
as [(sample absorbance � blank absorbance)/(control absorbance � blank absorbance)] � 100%. All
values reported represent the average MIC100 value for more than two biological replicates and two or
more technical replicates each. The average MIC100 value consistently fell within a twofold serial dilution
of the concentration of each experimental replicate. Any modifications to this protocol for a specific
species is listed in Table 7.

Revised CLSI M38-A protocol for hyphae of filamentous fungi and dermatophytes. The MIC100

endpoint of each antifungal agent was determined as the lowest concentration to inhibit 100% of hyphal
growth. MIC100 values for all filamentous fungi assayed were determined by the broth microdilution
method according to CLSI M38-A guidelines, with modifications (44).

For the dermatophytes, crushed hyphal fragments of Trichophyton tonsurans, Trichophyton rubrum,
and Microsporum canis at a density corresponding to an OD600 reading of 0.05 were incubated at 29°C
in RPMI 1640 plus 0.145 M MOPS, pH 7.0, in 96-well plates with twofold serial dilutions of nylon-3
polymer or with itraconazole (ITRA) from 1 to 64 �g/ml. After 96 h, the MIC of each well was measured
by monitoring the changes in OD600 compared to the value at the 0-h time point. From the OD
measurements, a difference in OD greater than 0.03 from the values at the 96- and 0-h time points was
indicative of growth. All values reported represent the average MIC100 value for two biological replicates
and six technical replicates each. The average MICs consistently fell within a twofold serial dilution of the
concentration of each experimental replicate.

Pseudogymnoascus destructans at a density of 1 � 104 spores/ml was incubated at 12°C in RPMI 1640
plus 0.145 M MOPS, pH 7.0, in 96-well plates with twofold serial dilutions of nylon-3 polymer or with ITRA
from 1 to 64 �g/ml. After 96 h, the MIC of each well was measured by monitoring changes in OD600

compared to the value at the 0-h time point. From the OD measurements, a difference in OD greater than
0.01 from the values at the 120- and 0-h time points was indicative of growth. All values reported
represent the average MIC100 value for two biological replicates and six technical replicates each. The
average MICs consistently fell within a twofold serial dilution of the concentration of each experimental
replicate.

A total of 1 � 104 conidia/ml of Aspergillus fumigatus, Aspergillus terreus, Aspergillus flavus, or
Aspergillus nidulans were inoculated into RPMI 1640 plus 0.145 M MOPS, pH 7.0 in 96-well plates and
incubated at 37°C for 18 to 24 h to allow for growth of the extensive hyphal network. Hyphae were then
treated with twofold serial dilutions of nylon-3 polymer or with ITRA from 1 to 64 �g/ml and allowed to
incubate at 37°C. OD600 readings were obtained at 0, 24, and 48 h. From the OD measurements, a
difference in OD greater than 0.05 from the values at the 48- and 0-h time points was indicative of
growth. All values reported represent the average MIC100 value for two biological replicates and six
technical replicates each. The average MICs consistently fell within a twofold serial dilution of the
concentration of each experimental replicate.

A total of 1 � 104 spores/ml of Penicillium expansum conidia were inoculated into RPMI 1640 plus
0.145 M MOPS, pH 7.0, in 96-well plates and incubated at room temperature for 24 to 48 h to allow for
germination into established hyphae. Hyphae were then treated with twofold serial dilutions of nylon-3
polymer or with ITRA from 1 to 64 �g/ml and allowed to incubate further at room temperature. OD600

readings were obtained at 0, 24, and 48 h. After 48 h, the MIC of each well was measured by monitoring
changes in OD600 in comparison to the value at the 0-h time point. From the OD measurements, a
difference in OD greater than 0.05 from the values at the 48- and 0-h time point was indicative of growth.
All values reported represent the average MIC100 value for two biological replicates and six technical
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TABLE 7 Strains used in this study

Species Isolate or strain Source Description Antifungal testa

S. cerevisiae W303 (ATCC 200060) Lab strain, obtained from
Catherine Fox lab

leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15

CLSI M27-A3, 1 mM uracil

C. neoformans CN1 Cerebrospinal fluid; clinical isolate Azole susceptible CLSI M27-A3, tested by NIAID
CN2 Popliteal lymph node; clinical

isolate (animal)
Fluconazole resistant CLSI M27-A3, tested by NIAID

CN3 Cerebrospinal fluid; clinical isolate Fluconazole resistant CLSI M27-A3, tested by NIAID

C. amylolentus CBS 6273 Insect frass isolate, obtained from
Joseph Heitman lab

CLSI M27-A3

CBS 6039 Insect frass isolate, obtained from
Joseph Heitman lab

CLSI M27-A3

C. albicans ATCC 90028 (CA1) Blood CLSI M27-A3, tested by NIAID
CA2 CLSI M27-A3, tested by NIAID
CA3 Blood Azole resistant CLSI M27-A3, tested by NIAID

C. krusei QC CLSI QC isolate for
susceptibility testing

CLSI M27-A3, tested by NIAID

C. auris B11220 Clinical isolate (Japan), obtained
from David Andes lab

CLSI M27-A3

C54039 Clinical isolate (Columbia),
obtained from David Andes lab

Amphotericin B resistant CLSI M27-A3

Coccidioides sp. Cocci1 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci2 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci3 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci4 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci5 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci6 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci7 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci8 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci9 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

Cocci10 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

B. dermatitidis BD1 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

BD2 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

BD3 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

H. capsulatum HC1 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC2 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC3 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC4 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC5 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC6 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

(Continued on next page)
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replicates each. The average MICs consistently fell within a twofold serial dilution of the concentration
of each experimental replicate.

CLSI M38-A2 protocol. The MIC100 endpoint of each antifungal agent was determined as the lowest
concentration to inhibit 100% of hyphal outgrowth from conidia. The MIC80 endpoint of each antifungal

TABLE 7 (Continued)

Species Isolate or strain Source Description Antifungal testa

HC7 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC8 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC9 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

HC10 Unknown; NIAID preclinical
testing services

CLSI M38-A2, tested by NIAID

A. fumigatus CEA10 Nancy Keller lab CLSI M38-A2, 35°C
A. flavus NRRL3357 Nancy Keller lab CLSI M38-A2, 35°C
A. oryzae Rib40 JGI Genome Project CLSI M38-A2, 35°C
A. terreus NCCB IH2624 JGI Genome Project CLSI M38-A2, 35°C
A. parasiticus Su-1 JGI Genome Project CLSI M38-A2, 35°C
N. fisheri CBS 544.65 JGI Genome Project CLSI M38-A2, 35°C
A. nidulans FGSCA4 JGI Genome Project CLSI M38-A2, 35°C
A. aculeatus CBS 172.66 JGI Genome Project CLSI M38-A2, 35°C
A. carbonarius DT0115-B6 JGI Genome Project CLSI M38-A2, 35°C
A. wentii DT0136-E9 JGI Genome Project CLSI M38-A2, 35°C
A. sydowii CBS 593.65 JGI Genome Project CLSI M38-A2, 35°C
A. foetidus CBS 106.47 JGI Genome Project CLSI M38-A2, 35°C
A. zonatus CBS 506.65 JGI Genome Project CLSI M38-A2, 35°C
A. niger CBS 113.46 JGI Genome Project CLSI M38-A2, 35°C
A. glaucus CBS 516.65 JGI Genome Project CLSI M38-A2, 35°C
A. brasiliensis CBS 101740 JGI Genome Project CLSI M38-A2, 35°C
A. clavatus CBS 513.65 JGI Genome Project CLSI M38-A2, 35°C
A. versicolor CBS 795.97 JGI Genome Project CLSI M38-A2, 35°C
P. expansum d1 Apples from Israel in 2012 CLSI M38-A2, 29°C
T. marneffei FRR2161, CBS 334.59,

ATCC 18224
ATCC CLSI M38-A2, 29°C

P. variotii QC CLSI QC isolate CLSI M38-A2, tested by NIAID

F. oxysporum FO1 Blood Clinical isolate CLSI M38-A2, tested by NIAID
FO2 Bone Clinical isolate CLSI M38-A2, tested by NIAID
FO3 Blood Clinical isolate CLSI M38-A2, tested by NIAID

S. apiospermum SA1 Toe Clinical isolate CLSI M38-A2, tested by NIAID
SA2 Elbow tissue Clinical isolate CLSI M38-A2, tested by NIAID

L. prolificans LP1 Chest wound Clinical isolate CLSI M38-A2, tested by NIAID

R. arrhizus RA1 Nose tissue Clinical isolate CLSI M38-A2, tested by NIAID
RA2 Tissue upper extremity Clinical isolate CLSI M38-A2, tested by NIAID
RA3 Palate tissue Clinical isolate CLSI M38-A2, tested by NIAID

F. depauperata CBS 7855 Caterpillar isolate, obtained from
Joseph Heitman lab

CLSI M38-A2, SD was used as
the growth medium during
antifungal testing

T. rubrum ATCC 28188 Alana Sterkel lab; UWb

Department of Pathology and
Laboratory Medicine

Clinical isolate; nail CLSI M38-A with modificationsc

M. canis UW10 Karen Moriello lab; UW School of
Veterinary Medicine

Wild-animal isolate; cat CLSI M38-A with modificationsc

T. tonsurans CBS 112818 Theodore White lab, Broad
Institute

Clinical isolate; cheek CLSI M38-A with modificationsc

P. destructans ATCC MYA-4855 Jeffrey Lorch lab; U.S. Geological
Survey

Wild-animal isolate; bat CLSI M38-A with modificationsc

aThe antifungal test and modifications are given. NIAID, National Institute of Allergy and Infectious Diseases.
bUW, University of Wisconsin.
cCLSI M38-A with modifications to test established hyphae rather than conidia for susceptibility. See the paragraph on the revised CLSI M38-A protocol for hyphae of
filamentous fungi and dermatophytes in Materials and Methods.
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was determined as the concentration to inhibit 80% of fungal growth. MIC100 or MIC80 values for all
filamentous or dimorphic fungi assayed (Table 7) were determined by the broth macrodilution method
according to the CLSI M38-A2 guidelines, with slight modifications (36). Briefly, fungal cells at a density
of 0.5 � 104 to 5 � 104 conidia/ml were incubated at 35°C in RPMI 1640 plus 0.145 M MOPS, pH 7.0, in
96-well plates with twofold serial dilutions of the nylon-3 polymer or with fluconazole (FLC), voriconazole
(VOR), or itraconazole (ITRA) from 1 to 64 �g/ml. After 24 to 72 h, the MIC of each well was measured
visually using a dissecting microscope. All values reported represent the average MIC100 values for more
than two biological replicates and two or more technical replicates each. The average MICs consistently
fell within a twofold serial dilution of the concentration of each experimental replicate. Any modifications
to this protocol for a specific species are listed in Table 7.

ATP-liteM assay for Pneumocystis spp. Cryopreserved and characterized Pneumocystis carinii
isolated from rat lung tissue and Pneumocystis murina isolated from mouse lung tissue were distributed
into triplicate wells of 48-well plates with a final volume of 500 �l at a final concentration of 5 � 107

nuclei/ml P. carinii and 5 � 106 nuclei/ml P. murina. Controls and compounds were added and incubated
at 36°C and 5% CO2. At 24, 48, and 72 h, 10% of the well volume was removed, and the ATP content was
measured using PerkinElmer ATP-liteM luciferin-luciferase assay. The luminescence generated by the ATP
content of the samples was measured by a BMG PolarStar optima spectrophotometer. A sample of each
group was examined microscopically on the final assay day to rule out the presence of bacteria.

For 50% inhibitory concentration (IC50) calculations, background luminescence was subtracted,
and triplicate well readings of duplicate assays were averaged. For each day’s reading, percent
reduction in ATP for all groups was calculated as follows: [(medium control � experimental
value)/medium control] � 100. IC50 values were calculated using GraphPad Prism 6 linear regression
program (Tables S3 and S4).

Evolutionary analysis. Multigene-based phylogeny between all fungal species depicted in Fig. 2 was
constructed based on amino acid sequences of 14 genes (Table S8) identified in Fusarium spp. to be
conserved for various energetic processes (45). Orthologous proteins for genes listed in Table S8 were
identified in each species using HMMer (Ensembl Fungi). Ten genes from Wiemann et al. (45) were
omitted from the analysis due to lack of orthologous protein identity in one or more of the species
tested. Resulting protein sequences for each of the gene were aligned to well-conserved regions using
MAFFT (46) and trimmed using Gblocks (47) using default parameters. All positions containing gaps and
missing data were eliminated. Trimmed alignments were then concatenated for each species, and a
maximum likelihood (ML) phylogeny was inferred based on the JTT model (48) using MEGA7 (49) and
viewed in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Data availability. All data are included in the article and supplemental files.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00223-18.
TEXT S1, PDF file, 0.2 MB.
TEXT S2, PDF file, 0.1 MB.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.1 MB.
TABLE S3, PDF file, 0.1 MB.
TABLE S4, PDF file, 0.1 MB.
TABLE S5, PDF file, 0.1 MB.
TABLE S6, PDF file, 0.1 MB.
TABLE S7, PDF file, 0.1 MB.
TABLE S8, PDF file, 0.1 MB.
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